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The maxima giving the corrected sites appear with
doubled strength relative to the non-centric case but
the maxima at the sites of the correctly postulated
atoms are more sensitive to errors in the structure
than in the non-centric case, since the rate of fall
off in the peak height with the number of erroneously
placed atoms of equal weight is doubled.

An application of the function

A brief description of our experience with the function,
C(r) as defined in (6), when applied to the crystal
structure analysis of dihydromalvalic acid, Ci1sH34Oz,
will illustrate some of its properties. The function was
applied to the (0kI) projection when a satisfactory trial
model had not been obtained.

The data consisted of 40 axial reflections (00I)
whose signs were known from the (k0l) projection
(Craven & Jeffrey, 1960) and twenty each of the low
order 01/ and 02! terms. The agreement factor, R,
was 0-61 excluding the axial reflections and there
was no indication of convergence to a correct solution.

The initial trial model is shown in Fig. 1(a) where
concentric circles represent oxygens and circles are
the carbon positions. The corresponding electron
density and C(r) maps are shown in Figs. 1(b) and 1(c)
respectively. The most obvious discrepancies between
the model and C(r) were at the center of the mole-
cule, near the cyclopropyl ring, and at the terminal
methyl group. Some minor changes in the chain
direction and the terminal configuration improved
R to 0-52. The model, go(r), and C(r) maps are shown
in Fig. 1(d), (¢) and (f). The discrepancies again
indicated errors at the ends of the molecule, and
suggested a reversal of the model. This corresponded
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to a shift of 2z coordinates to } —z, with the carboxyl
groups dimerized by hydrogen bonding across a
symmetry center at (%, 1) instead of the origin of the
space group A2/a. The correct model is shown in
Fig. 1(g). Successive Fourier refinement proceeded
normally to give an agreement of about 0-20 and the
electron density projection shown in Fig. 1(2) which
contained 220 terms. The corresponding C(r) map
appears in Fig. 1(3).

A comparison of map (k) with the maps (b), (c), (e)
and (f) shows quite clearly that the C(r) functions
gave a better indication of the true atomic positions
which were not included in the model than did the
electron density functions.

The author expresses his thanks to Prof. G. A.
Jeffrey for his encouragement and criticism and to
Drs R. Shiono, S. Chu and R. McMullan for the use
of their IBM 650 and 7070 Fourier programs. This
research was supported by the U.S. Public Health
Service, National Institutes of Health.
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Analysis of Three-Dimensional Patterson Maps Using Vector Verification
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A new path from the Patterson map to an electron density map has been investigated. The procedure
is called vector verification and involves testing all points in z, y, z space. Harker vectors are
generated for each point and their presence is sought in the Patterson map. If all vectors are present,
the point may be an atomic position. In most cases, over 95% of the positions in z, ¥, z space are
at once eliminated. It has been demonstrated that by using one known atomic position the remaining
atomic positions could be determined. One method which may be used to determine the position
of a ‘known’ atom involves the selection of a vector from the vector set, and the use of this vector
in a verification procedure leading to the position of an atom in the fundamental set.

Introduction

Most crystal structures are solved by conversion of
vector sets to the corresponding fundamental sets.

This step is usually the most difficult and time-
consuming in the structure determination of a com-
pound, and is especially difficult when heavy atoms
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are absent. One of the most powerful techniques
available is the superposition technique, but this
method has the disadvantage of retaining too many
incorrect peaks in the early stages. A detailed discus-
sion of the analysis of the Patterson map may be
found in the book on vector space by Buerger (1959).

Another path from the Patterson map to the
electron density map is now under study in this
laboratory. This method, called vector verification,
offers certain advantages over ordinary superposition
techniques. The first step usually eliminates over 959,
of the possible atomic positions and requires no prior
assumption as to an atomic position. The vector
verification method works best for space groups
having four or more equivalent positions; conse-
quently, many structures may be conveniently
studied. Another valuable feature of this method is
the speed with which it may be run on a large com-
puter. For example, the major part of the verification
method requires less than five minutes on the Control
Data Corporation 1604 computer.

Theory of vector verification

Before performing vector verification, a three-dimen-
sional Patterson map having 60 to 80 intervals in
each direction is stored in the memory of the com-
puter. Each point of the map is read into the computer
from magnetic tape and stored either as a one or
a zero. A one is stored if the value of the Patterson
function is greater than a threshold value, and a
zero otherwise. The threshold value can be changed
at will and is thus a parameter, the selection of which
depends on the atomic numbers of the atoms in the
molecule, the scaling constant used when preparing
the Patterson maps, efc. For instance, if it is desired
to store only peaks due to the interaction between
heavy atoms, the limit is set at a relatively high value.
The loss of the actual height of the peak above the
limit makes little difference in the final results,
since in the process of vector verification, it is only
necessary to know if a peak occurs at a specific
(%, v, w) in the vector set.

For an orthorhombic crystal in which there are
four equivalent positions the program proceeds as
described below. The vectors between an actual
atomic position and each of the other three symmetry
equivalent positions are three Harker vectors which
must be present in the vector set map. Therefore,
given any (x, y, z), it is possible to check the validity
of this point by checking for the Harker peaks in
the Patterson map. The program generates the three
Harker vectors and then goes to the Patterson map
in the computer and checks to see if the Harker peaks
are present. Only if all the peaks are present is this
point considered a possible atomic coordinate. In
performing the vector verification, all points in elec-
tron density space are systematically tested to see
if they can represent possible atomic coordinates.

ANALYSIS OF THREE-DIMENSIONAL PATTERSON MAPS

The grid scanned is exactly the same size as the grid
of the Patterson map.

Experimental results of vector verification

The above procedure was tested with BsgCls, the
molecular structure of which has already been deter-
mined (Jacobson & Lipscomb, 1959). After checking
each point in =z, y, z space, it was found that over
97% of the possible positions were eliminated, the
correct positions being present among the remaining
3%. Thus in this case, from a Patterson map
(80 x 40 x 80) grid points in (u, v, w) space, a map was
obtained as shown in Fig. 1 with dimensions
(80 x40 x 80). The distance between grid points
in this map is 0-12 A, and the x’s represent possible
atomic positions. Periods, which in the actual
output are printed in the ‘null’ positions, have been
eliminated for clarity.

1
—
0 XX X x O OXX X
XXX XBX
YRKXX XK
X 200
X 00X
by 3
xo008 X0XX
XXX XA
x o ” X
XXX XX oxx
XX 3
0
X0 00
XX XKX
AKX X0
o XXX
XX XX X xx
1
Y

Fig. 1. A typical section which illustrates the results of
Harker vector verification on BgCl;. X’s represent possible
atomic positions in z,y,z space, and darkened -circles
represent actual atomic positions.

Thus by the above procedure, the Patterson map
was converted to a map which more closely resembles
an electron density map. It should be noted that
so far no assumptions other than those concerning
the threshold have been made. Two facts should be
noted here. First, some points are accepted which
do not represent atomic positions. However, these
coincidence points are usually relatively small in
number. Secondly, the points which are correct
appear in sets related by symmetry elements, such
as mirror planes. Usually only one point in a given
set can be used in the final structure.

Extension of the original verification method

Maps at this stage are useful in the elimination of
most possible atomic positions and in the selection
of a suitable point for superpositions. The vector
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verification method can be extended, however, and
can lead directly to the correct set of atomic positions.
On the assumption that one correct atomic position
can be selected, an extension of the above program
was written. For each point in real space, the following
series of vectors are checked: Harker vectors, the
vector between the test point and the known atom,
and the vectors between the test point and the
symmetry-related atoms of the known atom. By
doing this for BsCls, a map was obtained which had
all the correct atomic positions plus very few coin-
cident peaks. Thus in the unit cell for BgCls, there
should be 32 chlorine peaks, and 40 peaks were found.
Fig. 2 shows a typical section resulting from this
program. The threshold value was set somewhat
lower (140 instead of 165) than in the first vector
verification procedure. By using a lower threshold,
one obtains broader peaks.
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Fig. 2. A typical section (same section and compound as in
Fig. 1) which illustrates the results of the vector verification
procedure when one atomic position is known. X’s represent
possible atomic positions in x,y, z space, and darkened
circles represent actual atomic positions.

Two methods are being developed to determine the
position of the ‘known’ atom. First, upon inspection
of the initial map produced as a result of checking
the Harker vectors, one can often directly select one
of these points as a correct peak. However, in groups
of ’s it is sometimes difficult to locate the correct
atomic position, since this position may not coincide
with the center of the group. A further and even more
serious difficulty is that of distinguishing the coin-
cidence points from the true ones. Since, however,
the program requires less than five minutes on a
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large computer, one can try several different 2’s and
thereby make a correct selection.
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Fig. 3. A typical section showing results obtained when a
known vector from the Patterson map is used to locate an
atomic coordinate in z, y, z space. X’s represent possible
atomic coordinates, and the darkened circle represenss
the actual atomic position.

A second method which should prove more fruitful
is also being investigated. Any vector in the Patterson
map must connect two atoms. Thus, a necessary
condition for an acceptable point (i.e., one for which
the Harker peaks check) to represent an atomic
position is that some Patterson vector, starting from
this point, lead to another acceptable point; and
furthermore that the vectors from the initial point
to the symmetry-related partners of the new point
occur in the Patterson map. If all these conditions
are met, then the initial (2, y, z) and the new point
(', y',2z") are both in high probability true atomic
positions. Fig. 3 shows the results of the procedure
when applied to BsCls. In addition to the correct
peak several coincidence peaks resulted.

In conclusion, we feel that wvector verification
should prove useful in structure determinations both
as an independent method and in conjunction with
related techniques.

We wish to thank the Army Research Office for
financial aid in the investigation.

References

BuERGER, M. J. (1959). Vector Space. New York: Wiley.
JacoBson, R. A. & Lirscoms, W. N. (1959). J. Chem.
Phys. 31, 605.



